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Abstract
We discuss the current situation concerning measurement and readout of
Josephson-junction based qubits. In particular, we focus attention on dispersive
low-dissipation techniques involving reflection of radiation from an oscillator
circuit coupled to a qubit, allowing single-shot determination of the state of the
qubit. In particular, we develop a formalism describing a charge qubit read out
by measuring its effective (quantum) capacitance. To exemplify, we also give
explicit formulas for the readout time.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanotechnology is considered promising for fabrication of scalable solid-state electronics for
quantum computers [1–3]. However, progress towards solid-state quantum computing will
critically depend on the development of measurement schemes and readout devices that, on
demand, can determine the state of individual qubits in a fraction of the coherence time, but
which otherwise do not disturb the qubit system. In quantum optics, efficient measurement
techniques have been developed during the last 30 years based on laser–atom interactions and
recently implemented in e.g. ion traps [4–9].

The corresponding work for solid state systems effectively started only about ten years
ago, and is currently exploring various paths. A problem is that there is no general device for
operation and readout, like a laser, but rather a multitude of implementations of measurements
of charge, spin, magnetic flux and charge current that must be adapted to the specific qubits to
be studied. Therefore, the qubit readout technology must be developed in intimate connection
with the qubits for characterization and control of coherence properties. This is a painstakingly
slow process, which, however, cannot be circumvented, because it is essential in many respects.
In particular, it is an important tool for determining the coherence properties of the qubits.
Moreover, the technology not only concerns qubit readout devices, but also involves quantum
oscillators for storing and transmitting information and for coupling qubits.
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Interestingly enough, quantum-optical methods are now being applied to solid-state qubit
systems, using microwaves for operating and reading out qubits, and oscillator circuits and
transmission lines for coupling qubits, introducing cavity-QED in solid-state systems [10–12].
This may turn out to be a major road on the Road Map for quantum coherent systems (‘quantum
computers’) [13, 14], and will be at the focus of the present paper. In particular, we will
describe some practical schemes for reflecting microwaves from an oscillator circuit, the phase
shift measuring the changes in charge [15, 16] or magnetic flux [17–21] induced by a qubit,
allowing us to distinguish between the different states |0〉 and |1〉 of the qubit.

2. Measurement of quantum information and qubit readout

2.1. Introduction

The ultimate objective of a qubit readout device is to distinguish the eigenstates of a qubit
in a single measurement ‘without destroying the qubit’, a so called ‘single-shot’ quantum non-
demolition (QND) projective measurement. This objective is essential for several reasons: state
preparation for computation, readout for error correction during the calculation, and readout of
results at the end of the calculation. Strictly speaking, the QND property is only needed if the
qubit must be left in an eigenstate after the readout. In a broader sense, readout of a specific
qubit must of course not demolish other qubits in the system.

Note that one cannot ‘read out the state of a qubit’ in a single measurement—this is
prohibited by quantum mechanics. The effect of a single ideal measurement on a qubit in a
general superposition a |0〉 + b |1〉 is to leave the qubit in one of the states |0〉 or |1〉, which
carries no information about the amplitudes a or b. It takes repeated measurements on a
large number of replicas of the quantum state to characterize the state of the qubit—‘quantum
tomography’. This is the procedure to collect the statistics for expectation values.

The measurement connects the qubit with the open system of the detector, which collapses
the combined system of qubit and measurement device to one of its common eigenstates. If the
coupling between the qubit and the detector is weak, the eigenstates are approximately those
of the qubit. In general, however, one must consider the eigenstates of the total qubit-detector
system and manipulate gate voltages and fluxes such that the readout measurement is performed
in a convenient energy eigenbasis (see e.g. [22] and [23]).

2.2. Survey of readout methods for JJ-based qubits

Here we will provide a brief recapitulation of the ‘history’ of readout of Josephson-junction-
(JJ-) based quantum circuits and qubits. For an extensive discussion of JJ-based qubit circuits,
see the recent review by Wendin and Shumeiko [3].

Figure 1 shows general designs for the charge and flux qubits and with oscillator-type
readout circuits. The single Cooper-pair box (SCB) (similar to figure 1, left) is described by
the Hamiltonian

Ĥ = EC(n − ng)
2 − EJ cos φ (1)

and the rf-SQUID (similar to the flux qubit in figure 1, right; see section 6) by the Hamiltonian

Ĥ = EC n2 − EJ cos φ + EL
(φ − φe)

2

2
; (2)

where EC is the charging energy of the SCB island, EJ is the Josephson energy due to Cooper-
pair tunnelling between the superconducting electrode and island across the JJ, and EL is the
inductive energy of the superconducting loop. n and φ are operators for the induced charge and
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Figure 1. Circuit diagrams and two-level energy spectrum of two basic JJ-qubit designs: the
SCB charge qubit with LC-oscillator readout (left), and persistent-current flux qubit with SQUID
oscillator readout (right). For the charge qubit, the control variable ε on the horizontal axis of the
energy spectrum (middle) represents the external gate voltage (induced charge), and the splitting is
given by the Josephson tunnelling energy mixing the charge states. For the flux qubit, the variable ε

represents the external magnetic flux. In both cases, the energy of the qubit can be ‘tuned’ and the
working point controlled. Away from the origin (asymptotically) the levels represent pure charge
states (zero |0〉 or one |1〉 Cooper pair on the SCB island) or pure flux states (left |0〉 or right |1〉
rotating currents in the SQUID ring).

the phase of the (effective) Josephson junction, and ng is the induced charge controlled by the
external bias voltage Vg. Both qubits are represented by the generic two-level Hamiltonian

Ĥ = − 1
2 (εσz + �σx) (3)

where σz and σx are the usual Pauli matrices.
In the original experiment of Nakamura et al [24], demonstrating coherent oscillation of

the charge qubit two-level system (figure 1, left), the readout was implemented simply by a
control dc-pulse on the charge gate, moving the working point far away from the origin so that
the upper |1〉 level ended up above the gap edge of a superconducting lead connected to the SCB
island via a tunnel junction. As a result, a Cooper pair on the upper level |1〉 would immediately
decay into the external lead as two quasiparticles, creating a normal electron current. Repeating
the measurement at a high rate created a detectable current proportional to the occupation of
the upper state |1〉, revealing the oscillations. Since the SCB is permanently connected to the
environment via a tunnel junction, it seemed plausible at the time that this might be the reason
for the short coherence time, ∼2–3 ns.

This focused the interest on more advanced readout devices. A remedy could be to
use a charge measuring device that was only capacitively coupled to the SCB island and
could be turned on and off by an external voltage pulse. Delsing and co-workers [25]
therefore developed an rf-SET (radio frequency single-electron transistor) readout [26] for the
charge qubit, and successfully detected free oscillations and studied the detailed behaviour of
relaxation and dephasing [25]. The result showed that the coherence time was confined to
below 10 ns and seemed limited by relaxation effects. Moreover, subsequent experiments by
the NEC group [27], implementing more advanced readout concepts, storing the emitted pair
of quasiparticles on a superconducting island, and reading the charge with a superconducting
SET, made no big change. All in all, the status seems to be that the coherence time of the circuit
is severely limited by intrinsic charge fluctuation processes (noise) in the substrate, or in the
tunnel barriers, or by transients due to the pulsed operation of the qubit.

Alternatively one could create a new type of charge qubit by connecting the Cooper pair
box island to two JJ tunnel junctions, creating a single Cooper pair transistor (SCT). This
could be probed via charge [16] or current [28–31] measurements. These experiments can be
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Figure 2. A single-electron transistor: a small metallic island connected to source and drain
leads through tunnel junctions. The signal voltage Vs induces a charge qm on the measurement
capacitance Cm. When the system is at the limit of being Coulomb blockaded, a small change of
qm will have a large effect on the current I through the SET.

designed either as threshold detection measurements or as microwave-reflection measurements.
The reflection measurements with phase-shift detection will be the main theme of this paper.

Moreover, there is the persistent-current flux qubit, based on a quantum version of the
RF-SQUID [33–36] coupled to a measurement dc-SQUID. This measurement SQUID can
be operated either as a current threshold detector [35, 36] or as resonance circuit reflecting
and phase-shifting microwave radiation [20, 21]. We will also briefly describe the microwave
reflection measurement in this case in section 6.

3. Charge measurements

The most straightforward way to read out a charge qubit is to measure its charge. As discussed
above, to obtain a high fidelity read-out one should perform a measurement in the qubit
eigenbasis. This removes the possibility for the qubit to switch its state during the measurement.
When the measurement basis is fixed, as determined by a charge measurement, we need to bias
the qubit where the charge basis is the eigenbasis. For the superconducting charge qubit this
implies a complete quenching of the Josephson energy, while for quantum dot charge qubits
one needs to raise the tunnel barrier between the dots. Having quenched the transitions between
the charge states the fidelity will in theory be perfect, irrespectively of the measurement
speed. In reality there is always some remaining transition/relaxation channel open which
implies the need of a fast read-out. Fast read-out is also mandatory for implementing an error
correcting algorithm, where the read-out and correction should be performed on a timescale set
by decoherence of the other qubits.

3.1. The radio-frequency single-electron transistor

The state of the art charge measurement device is the radio-frequency single-electron transistor
(rf-SET) [26] with an experimentally measured sensitivity of δq = 3.2 × 10−6e Hz−1/2 [37].
The measurement time tms needed to separate two states with a charge difference �Q is
tms = (2δq/�Q)2, indicating the possibility of detecting a charge difference of one percent
of the electron charge (�Q = 0.01e) in half a microsecond.

The single-electron transistor (SET) consists of a small metallic island connected to source
and drain leads through tunnel junctions (see figure 2). Applying a source–drain voltage the
current through the SET depends critically on the charge induced on the gate capacitance. The
charge on the gate capacitance is determined by measuring the current. The SET is in itself
a sensitive electrometer but suffers from low operating speed, which in addition to being a
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Figure 3. Resonant circuits for read-out: (a) a lumped element LC-oscillator coupled to a driving
source and a radio-frequency detector through a transmission line. (b) The radio-frequency single-
electron transistor measuring the charge of a charge qubit (SCB). The current through the SET
determines the dissipation in the resonant circuit. The dissipation is determined by measuring the
amplitude of the reflected signal. (c) Set-up for measuring the quantum capacitance of the charge
qubit. The qubit capacitance influences the resonance frequency of the oscillator. The capacitance
is measured by determining the phase-shift of the reflected signal.

drawback on its own makes it sensitive to the low frequency charge fluctuations. The rf-SET
is realized by embedding an SET in a resonant circuit (see figures 3(a), (b)). The main source
of dissipation in the oscillator is current flowing through the SET, and for small amplitude
oscillations we may replace the SET by its effective (differential) resistance. The oscillator is
excited by sending down a radio-frequency signal on resonance. The dissipation is determined
by measuring the amplitude of the reflected signal. This way of operating the SET increases its
operating speed and sensitivity significantly.

3.2. Single-shot read-out

The high sensitivity can be used to couple the rf-SET weakly to the charge qubit, reducing the
back-action in the off-state. In practice it is impossible to switch off the interaction completely,
i.e. the qubit eigenbasis is not exactly the charge basis, and there is some unavoidable mixing
of the charge states. A careful investigation of the rf-SET coupled to a superconducting
charge qubit shows that single-shot read-out with a very high fidelity is still possible in
practice [38–40]. To optimize the fidelity one should bias the charge qubit as far away from
the degeneracy point as possible, in order to minimize the effect of any residual Josephson
coupling.
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4. Capacitance measurements—a quasiclassical description

The low-frequency charge fluctuations present in all realizations of superconducting charge
qubits so far [41, 42] promote the use of schemes where the charge qubits are operated at the
charge degeneracy point around the origin in figure 1 (middle panel). Here the qubit eigenstates
have equal average charge and thus they are shielded from charge fluctuations. To use the rf-
SET read-out described in the previous section one needs to quickly shift the qubit far away
from degeneracy simultaneously with switching on the measurement. Although this timing
is far from impossible, the present trend is to use schemes where the qubit also remains at
charge degeneracy during read-out in order to minimize decoherence. This can be achieved by
measuring the effective capacitance of the charge qubit, as we describe below.

4.1. Quantum capacitance of a single-Cooper-pair box

The quantum capacitance of the Cooper-pair box [43, 44] is related to the parametric
capacitance of small Josephson junctions [45–47], which is a dual to the Josephson inductance.
The origin of the quantum capacitance of a single-Cooper-pair box (SCB) can be understood
as follows. Assume that we put a constant voltage Vm on the measurement capacitance of the
SCB, i.e. we put a voltage source between the open circles in figure 3(c). The amount of charge
on the measurement capacitance qg/e

m (Vm, Vg) will be a nonlinear function of the voltage Vm

as well as the gate voltage Vg and whether the qubit is in the ground or excited state. We may
define an effective (differential) capacitance

Cg/e
eff (Vm, Vg) = ∂

∂Vm
qg/e

m (Vm, Vg), (4)

as seen from the measurement circuitry. Away from the charge degeneracy points of the SCB
no charge will float across the Josephson junction and the effective capacitance is simply the
geometric capacitance Cgeom = CJCm/(CJ + Cm) of the Josephson junction capacitance CJ

and the measurement capacitance Cm in series. Around the charge degeneracy point a change
of voltage will induce a shift of a Cooper pair across the Josephson junction. For a voltage
changing slowly on the timescale of the inverse qubit gap h̄ E−1

J this charge redistribution is
dissipationless. This contribution to the effective capacitance, which depends on the qubit state,
we call the quantum capacitance Cg/e

Q . From the SCB Hamiltonian (see e.g. equation (18)) it is
straightforward to show

Cg/e
eff (Vm, Vg) = CJCm

CJ + Cm
± C2

m

C�

E2
J EQ

(
E2

Q[1 − 2(ng + nm)]2 + E2
J

)3/2

= Cgeom + CQ(ng + nm), (5)

where C� = CJ + Cm + Cg is the total island capacitance, EQ = 2e2/C� is the Coulomb
energy of a Cooper pair, and ng/m = Cg/mVg/m/2e are the induced numbers of Cooper pairs
on the gate and measurement capacitances respectively. We note that the quantum capacitance
is positive in the ground state and negative in the excited state, as illustrated in figure 4. The
absolute value is largest at the charge degeneracy ng + nm = 0.5

Cmax
Q = C2

m

C�

EQ

EJ
. (6)

The quantum capacitance can be an order of magnitude larger than the geometric capacitance
for realistic parameters. By inserting the Cooper-pair box in a resonant LC-circuit and
detecting its influence on the resonance frequency, the quantum capacitance was recently
measured by two different groups [15, 16]. The measurement set-up is similar to the set-up
that would be used for qubit read-out and is analysed below.
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Figure 4. The quantum capacitance of a single-Cooper-pair box with EJ/EQ = 0.2. Here
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4.2. Read-out by measuring the quantum capacitance

At the charge degeneracy point the effective capacitance of the SCB in the ground and excited
states differs by 2Cmax

Q . Imbedding the SCB in a resonant circuit as shown in figures 3(a)

and (c) we can detect the corresponding change in the oscillator resonance frequency ω
g/e
0 =

1/
√

L(C ± Cmax
Q ) = ω0(1 ∓ Cmax

Q /2C), where ω0 = 1/
√

LC is the bare resonance frequency.

The voltage reflection amplitude 	(ω) = Vout(ω)/Vd(ω) seen from the driving side of the
transmission line can for a high quality oscillator be written

	(ω) = 1 + 2iQ (ω−ω0)

ω0

1 − 2iQ (ω−ω0)

ω0

= eiϕr , where ϕr = 2 arctan

(
2Q(ω − ω0)

ω0

)
, (7)

up to a constant phase depending on the length of the transmission line. Here Q is
the resonator’s quality factor, which for the circuitry in figure 3(a) is determined by the
characteristic impedance on the transmission line Z0 through Q = ω0 LC2/C2

c Z0. Since there
is no dissipation in the oscillator we have |	(ω)| = 1. Driving the oscillator at the bare
resonance frequency ωd = ω0 the phase-difference between the ground and excited states of
the qubit will be

δϕr = ϕg
r − ϕe

r = 4 arctan (QCmax
Q /C). (8)

The phase-difference can be detected by measuring the reflected signal in-phase and quadrature
components after mixing it with the drive.

5. A quantum description of the quantum capacitance readout

Above we described the quantum capacitance of the Cooper-pair box and its use for qubit read-
out in a quasiclassical manner, treating the oscillator, transmission line, drive and detection
classically. In order to address questions about the optimal read-out time, quantum back-action
on the qubit and quantum efficiency of the read-out process we need a fully quantum description
of the system. In this paper we do not have the space to go into details, which will be published
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Figure 5. The circuit used for measurement of the quantum capacitance of the Cooper-pair box. It
is similar to the circuit shown in figures 3(a) + (c), but the transmission line is here modelled as
a semi-infinite line of LC-circuits in series. The phases �i (t) = ∫ t dt ′ Vi (t ′) across the different
circuit elements are the coordinates used in the Lagrangian describing the dynamics of the system.

elsewhere [48], but we will discuss the principles of our model and show a fully quantum
derivation of the quantum capacitance.

The approach we chose is close to the ‘quantum network theory’ introduced by Yurke
and Denker [49]. In section 5.1 we start by writing down the Lagrangian describing the
classical dynamics of the circuit. Through a Legendre transform we arrive at the corresponding
Hamiltonian. By stating canonical commutation relations between our phase coordinates �i

and their canonical conjugate momenta (charges) qi
[
�i , qi

] = ih̄ (9)

we arrive at a quantum Hamiltonian description of our circuit, which is discussed in section 5.2.
In the relevant parameter regime we arrive at the expression for the quantum capacitance of the
Cooper-pair box. Finally in section 5.3 we give an expression for the optimal qubit read-out
time using homodyne detection.

5.1. Circuit Lagrangian

The circuit for performing read-out through the quantum capacitance is presented in figure 5.
A Josephson charge qubit is capacitatively coupled to a harmonic oscillator, which is coupled
to a transmission line. Through this line, all measurement on the qubit is performed. We model
the line as a semi-infinite line of LC-circuits in series. The working point of the Josephson
junction can be chosen using the bias Vg. In writing down the Lagrangian we are free to choose
any quantities as our coordinates as long as they give a full description of our circuit. Since we
are treating a system including a Josephson junction, the phases �i(t) = ∫ t dt ′ Vi(t ′) across
the circuit elements are natural coordinates, as discussed by Devoret in [50]. (This is in contrast
to the original work by Yurke and Denker, where charges are chosen as coordinates.)

The capacitive energy of the circuit acts as the kinetic terms in the Lagrangian [3]

T = 1
2

(
Cg�̇

2
g + CJ�̇

2
J + Cm�̇2

m + C�̇2 + Cc�̇
2
in

)
+ 1

2

∞∑

i=1

�xCT (�̇
p
i )2 (10)

and the inductive part plays the part of potential energy

V = �2
L

2L
− EJ cos

(
2e

h̄
�J

)
+

∑

i

�x
(�

p
i+1 − �

p
i )2

2LT (�x)2
. (11)
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Applying Kirchhoff’s voltage law gives us the constraints

�̇g − �̇J + Vg = 0, �J + �m − � = 0,

�in + � − �
p
1 = 0, � − �L = 0,

(12)

which gives the Lagrangian for the system

L = Cqb�̇
2
J

2
+ (Cosc + Cc)�̇

2

2
+ Cc(�̇

p
1 )2

2
− �2

2L
+ EJ cos

(
2e

h̄
�J

)

− Cm

2
�̇�̇J − Cc

2
�̇�̇

p
1 − CgVg�̇J

+
∞∑

i=1

�x

(
CT (�̇

p
i )2

2
− (�

p
i+1 − �

p
i )2

2LT (�x)2

)

. (13)

The capacitances in the Lagrangian are now Cqb = CJ + Cg + Cm, and Cosc = C + Cm.

5.2. Hamiltonian and quantum capacitance

From the Lagrangian we easily obtain the Hamiltonian through a Legendre transform. We
present the Hamiltonian in the form

H = Hqb + Hosc + HTL + Hint, (14)

and for simplicity we assume weak coupling Cm � {Cosc, Cqb} and present only the lowest
order (in Cm/{Cqb, Cosc}) terms. Hqb contains the qubit degrees of freedom including the
coupling of the qubit to the rest of the system

Hqb = 1

2Cqb
(qJ + CgVg)

2 + Cm

CqbCosc

(
q + qp

)
(qJ + CgVg) − EJ cos

(
2e

h̄
�J

)
, (15)

while the terms describing the oscillator, transmission line and their interaction are

Hosc = q2

2Cosc
+ �2

2L
, HTL = q2

p

2Cc
+ 1

�x

∞∑

i=1

(
(q p

(i+1))
2

2CT
+ (�

p
i+1 − �

p
i )2

2LT

)

,

Hint = qqp

Cosc
, (16)

where the charge operators q, qJ, qp and q p
i are the conjugate momenta to phase operators

�,�J,�
p
1 and �

p
i respectively. For realizing a charge qubit the box charging energy EC =

e2/2Cqb is much smaller than the Josephson energy EC � EJ. For relevant parameters we can
then limit the qubit charge qJ to the two values {0, 2}e, and we get the usual expression for the
qubit Hamiltonian in the language of the Pauli spin matrices

Hqb = − Eel

2
σz − EJ

2
σx + 2ECκ

q + qp

e
σz + 2ECκ

q + qp

e
(1 − n0), (17)

where we introduce the electrostatic energy-difference of the qubit states Eel = 4EC(1 − n0),
the dimensionless charge n0 = CgVg/e, and the oscillator-qubit coupling coefficient κ =
Cm/Cosc � 1. The last term does not influence the system dynamics and may be absorbed
in a small shift of q and qp. Rotating the remaining two terms to the eigenbasis of the qubit

Hqb = σz

√
16E2

C

(
1 − n0 − κ(q + qp)/e

)2 + E2
J /4, (18)

we arrive at the usual charge qubit Hamiltonian with the charge induced by the oscillator added
to the induced gate charge. We now concentrate on the case when the oscillator frequency
ω0 = 1/

√
LCosc is much lower than qubit frequency EJ/h̄. Furthermore, we consider the
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amplitude of the oscillator charge oscillations q0 such that the induced charge oscillations in
the qubit are small, κq0/e � EJ/4EC � 1. In this case the qubit will follow the oscillator
dynamics adiabatically and the rates for transition between the qubit eigenstates are negligible.
Furthermore, we may Taylor expand the qubit energy around the working point and at the
charge degeneracy n0 = 1 we arrive at the final Hamiltonian

H = − EJ

2
σz +

(
1

2Cosc
+ 4κ2 E2

C

e2 EJ
σz

)
(q + qp)

2 + �2

2L
+ q2

p

2Cc

+ 1

�x

∞∑

i=1

(
(q p

i+1)
2

2CT
+ (�

p
i+1 − �

p
i )2

2LT

)

. (19)

The qubit thus shifts the capacitative energy of the oscillator, which in turn corresponds
to adding a small extra capacitor to the oscillator C� = Cosc + CQ, where the quantum
capacitance CQ is given by

CQ = −2e2C2
m

EJC2
qb

σz, (20)

which is identical to the semiclassical formula in equation (6). This in turn will shift the
resonance frequency of the oscillator by an amount δω = −σzω0CQ/2Cosc.

5.3. Qubit read-out using homodyne detection

Taking the continuum limit �x → 0 in equation (19) the solutions to the Hamiltonian for the
transmission line correspond to fields �(x ± vt) propagating to the left and right with velocity
v = 1/

√
CT LT . From the Hamiltonian we derive equations of motion from which the right-

propagating out-field �out(t) and the charge on the oscillator q(t) can expressed in terms of
the left-propagating in-fields �in(t), which is determined by the drive. In the parameter regime
relevant for qubit read-out, where the amplitude of the qubit charge oscillations induced by
the LC-circuit is small, the qubit will follow the oscillator adiabatically. Furthermore it is
adequate to neglect third and higher order terms in the Taylor expansion of the qubit energy
in equation (18). Thus we arrive at linear equations of motion which we may solve in Fourier
representation

χ(ω) = i2CcC� Lω3

1 − (C� + Cc)Lω2 − iωCc Z0(1 − LC�ω2)
,

q(ω) + qp(ω) = χ(ω)�in
p (ω),

�out(ω) = χ(ω)

χ∗(ω)
�in

p (ω) = S(ω)�in
p (ω),

(21)

where Z0 = √
LT /CT is the characteristic impedance of the transmission line. Since there

is no dissipation in the lumped circuit we have |�out(ω)| = |�in(ω)|. In this linear regime
the Heisenberg equations of motion are similar to the classical ones, and for a high quality
oscillator we have S(ω) = 	(ω) as given in equation (7). To discuss the quantum statistics of
the qubit read-out we need a quantized representation of the fields

�in(t) =
√

h̄ Z0

4π

∫ ∞

0

dω√
ω

[
ain

ω e−iωt + (ain
ω )†eiωt

]
,

�out(t) =
√

h̄ Z0

4π

∫ ∞

0

dω√
ω

[
S(ω)ain

ω e−iωt + S(ω)∗(ain
ω )†eiωt

]
,

q(t) =
√

h̄ Z0

4π

∫ ∞

0

dω√
ω

[
χ(ω)ain

ω e−iωt + χ(ω)∗(ain
ω )†eiωt

]
,

(22)



Readout methods and devices for Josephson-junction-based solid-state qubits S911

where the in-field annihilation and creation operators obey the canonical commutation relations

[aω, a†
ω′ ] = δ(ω − ω′), and [aω, aω′ ] = 0. (23)

What we have achieved is a complete quantum description of the dynamics of the oscillator
and qubit in terms of the incident field from the transmission line. We also get a full description
of the outgoing field, which is what will enter the detector. The linearity of the equations
of motion arises since we have approximated the qubit with a state-dependent capacitance.
This is valid as long as the amplitudes of the charge oscillations induced on the qubit island
are small, so that a second order Taylor expansion of the energy in equation (18) is enough.
Furthermore, we neglect transitions between the qubit states, which can be done for small
amplitude oscillations and a low oscillator frequency h̄ω0 � EJ.

We now have the formalism needed to address questions about the readout time, which
we do in the next section. We can also calculate the back-action of the measurement process
on the qubit. This and the issue of the quantum efficiency, i.e. the relation between the qubit
dephasing rate and the measurement time, will be addressed elsewhere [48].

By measuring the power of the reflected signal mixed with a local oscillator, e.g. the drive
itself, and then a local oscillator shifted by 90◦, the in-phase and quadrature signal amplitude
can be extracted, as was done in [25]. For optimized qubit read-out it is advantageous to
implement the standard quantum optics scheme of homodyne detection [52].

To model a measurement we thus put the in-field in a coherent Glauber state [51]

|{α(ω)}〉 = exp

(∫
dω [α(ω)(ain

ω )† − α∗(ω)ain
ω ]

)
|0〉, (24)

where α(ω) is the Fourier-transform of our drive signal, and |0〉 is the continuum vacuum field
aω|0〉 = 0. We model our drive source with a narrow (	d � ωd) Gaussian distribution in
frequency

α(ω) = α0
ωd

	d

e−(ω−ωd)
2/2	2

d√
ω

, (25)

where α0 is a dimensionless constant. For |t| � 	−1
d this gives the average electrical field

V̄ in(x, t) = −α0

√
2h̄ Z0ωd sin

[
ωd(t + x/v)

]
, (26)

giving on average 	in
n = α2

0ωd photons per second sent through the transmission line by the
drive.

The annihilation operator for the reflected signal has the amplitude aout
ω = S(ω)ain

ω ≈
e−(ωdt−ϕ

g/e
r )ain

ω depending on the qubit state. The signal is mixed with a strong local oscillator
with amplitude αLOe−(ωdt−ϕLO) and the intensity is detected. The result is then integrated for a
time T . The intensity is given by the number of photons incident on the detector

N(ω, T ) =
∫ T

0
dt b†(t)b(t) (27)

where the field at the detector is

b(t) = rαLO(t) + rv(t) + taout(t); (28)

here r � 1 denotes the small reflection coefficient of the mixer and t is the corresponding
transmission coefficient, and v(t) is the vacuum field of the idle mixer port. (The mixer is a
beam-splitter in the quantum optics case.) We now assume that |rαLO(t)| � 1 is large and
neglect second order contributions in v(t) and a(t) to equation (27), arriving at the average
photon number at the detector

〈Ng/e〉 = T
(
r 2α2

LO + 2trαLOαin
0 cos (ϕg/e

r − ϕLO)
)
, (29)
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where αin
0 is the amplitude of the in-field. The first term is a pure local oscillator term and

contains no information, while the second term is maximized choosing ϕLO = ϕ
g
r +ϕe

r
2 − π

2 . The
two probability distributions of the number of detected photons will be separated by twice the
variance after the measurement time

Tms = 1

	in
n

1

4 sin2
[

ϕ
g
r −ϕe

r
2

] , (30)

where 	in
n is rate of photons sent into the transmission line by the drive. For not too low quality

factor of the oscillator we can use the Breit–Wigner approximation for χ(ω) leading to the
expression for the phase-shift in equation (8). Thus we find for the measurement time

Tms = 1

	in
n

1

4 sin2 [2 arctan x]
= (x−1 + x)2

16	in
n

, x = QCmax
Q

C
. (31)

From the condition that the drive should induce only small oscillations of the qubit charge we
arrive at the following bound for the drive strength:

	in
n <

EJ

16h̄
(x + x−1) (32)

giving a lower bound on measurement time

Tms >
h̄

EJ
(x + x−1), (33)

indicating that the measurement time must be larger than h̄/EJ, which is not very restrictive.
Due to the oscillator ‘ring-up’ time the measurement time is further limited by Tms > Q/ω0 =
xC/CQω0. For a fixed ω0 this indicates that the regime x � 1 is advantageous. Comparing
these two inequalities we find the shortest measurement time for

x2
opt = CQ

C

h̄ω0

EJ
, Qopt =

√
C

CQ

h̄ω0

EJ
, and Tms >

Qopt

ω0
, (34)

implying that a low Q is clearly an interesting regime. For low Q the Breit–Wigner
approximation of χ(ω) breaks down, and so does the simple estimate of the measurement,
but the formalism developed here is still applicable using the full expressions. An optimization
including the measurement induced back-action on the qubit will be discussed in [48].

5.4. A comparison with dispersive readout using a non-adiabatic oscillator

In an experiment at Yale University [53] a charge qubit coupled capacitatively to a microstrip
cavity was read out by sending microwaves through the cavity. The qubit state influences the
resonance frequency and thus the phase-shift of the transmitted signal. This phase difference
was then detected in a similar fashion as described above.

The main difference compared to what was discussed above is that the cavity resonance
frequency (5.4 GHz) was of the same order of magnitude as the qubit frequency (4.3 GHz). In
this regime it is appropriate to use the rotating wave approximation and the system dynamics is
described by the Jaynes–Cummings Hamiltonian [10].

For a comparison we start with the Hamiltonian of a qubit coupled transversely to a
harmonic oscillator

H = − h̄ωqb

2
σz + igσx(a

† − a) + h̄ωosc

(
a†a + 1

2

)
, (35)
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applicable for a charge qubit at charge degeneracy, coupled capacitatively to the harmonic
oscillator. Performing a straightforward second order perturbation expansion in the coupling
term we find the renormalized spectrum

En↑ = h̄ωosc

(
n + 1

2

)
− h̄ωqb

2
− g2

[
n

h̄ωqb − h̄ωosc
+ n + 1

h̄ωqb + h̄ωosc

]
and

En↓ = h̄ωosc

(
n + 1

2

)
+ h̄ωqb

2
+ g2

[
n

h̄ωqb + h̄ωosc
+ n + 1

h̄ωqb − h̄ωosc

]
,

(36)

where n indicates the number of photons in the oscillator and ↑/↓ the qubit in the
ground/excited state for the unperturbed state (g → 0). The spectrum is formed by two
equidistant sets of energy levels, where the effective qubit-dependent frequency shift of the
oscillator amounts to

δω = −σz g2

[
1

h̄ωqb − h̄ωosc
+ 1

h̄ωqb + h̄ωosc

]
, (37)

being negative for the qubit in the ground state. In the regime |ωqb − ωosc| � ωqb only the first
term contributes and we arrive at the Jaynes–Cummings result δω = −σz g2/(h̄ωqb − h̄ωosc). In
the adiabatic regime ωosc � ωqb we can neglect the terms ±h̄ωosc in the denominators, giving
the result below equation (20), δω = −σz2g2/h̄ωqb. Thus we see that the frequency shift given
by the Jaynes–Cummings Hamiltonian can be described on the same footing as the one given
by the quantum capacitance.

6. Flux measurement

The two-level quantum states of the persistent-current flux qubit (figure 1) are characterized
by different directions of the persistent currents circulating in the qubit loop, hence different
directions of the induced magnetic flux. The flux qubit readout is based on the detection of the
induced flux or direct measurement of the persistent currents. The latter method is also relevant
for charge qubits with loop-shape electrodes (e.g. quantronium [28]), where the intensity of the
induced flux is too small to be detectable while detection of the persistent current is possible. In
flux qubits with larger Josephson junctions, persistent currents are large, and the measurement
of flux is not that difficult [18, 20, 35, 55]. The experimental measurement set-up is sketched
in figure 1, left picture: the qubit loop is inductively coupled to a dc-SQUID connected to a
current source. The direction of the persistent current in the qubit loop affects the magnetic
flux threading the SQUID and thus affects the SQUID critical current as well as its plasma
frequency. This allows one to make the two types of measurements, by probing the dc and
the ac properties of the measurement SQUID. In the first case, the critical current is measured
by applying a dc current slowly increasing with time, and detecting the value of the critical
current when the SQUID switches to the resistive branch (threshold detection), repeating the
measurement to create a histogram of the events. In the second case, an ac current is applied
and the phase shift of the reflected signal is measured. The latter method is also possible to
realize using a linear LC-oscillator instead of the dc SQUID [18].

To quantitatively analyse the circuit (see e.g. [3, 21, 54]), let us for simplicity consider the
single-junction flux qubit; the analysis also applies to the experimental three-junction qubits.
The circuit Hamiltonian consists of the Hamiltonian Hq of the qubit loop, the Hamiltonian of
the SQUID, HS, and the Hamiltonian of the inductive coupling, Hint. The qubit Hamiltonian
has the form given in equation (2); here, we modify the notations,

Hq = ECqn2
q − EJ q cos φq + ELq φ̃

2
q , (38)
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φ

Figure 6. Double-well potential and energy levels of the flux qubit ( fq = π ).

where ECq = (2e)2/2Cq is the charging energy of the qubit junction, EJ q is the Josephson
energy, ELq = (�0/2π)2(1/2Lq) is the inductive energy of the qubit loop, and φ̃q = φq − fq

is the induced flux; fq is the biasing flux. The SQUID Hamiltonian is given by

Hs =
2∑

i

(ECsn2
i − EJ s cos φi ) + ELsφ

2
s + h̄

4e
I (t)(φ1 − φ2), (39)

where the induced flux is φs = φ1 + φ2 − fs, and I (t) is a (non)stationary current bias. The
interaction term has the form

Hint = EM φ̃qφs, (40)

where the interaction energy is determined by the mutual inductance M , EM =
(�0/2π)2(M/Lq Ls).

Now we truncate the Hilbert space of the circuit Hamiltonian to the lowest energy states,
which include the two almost degenerate (for ECq � EJ q and at fq ≈ π ) lowest energy states
in the potential wells of the qubit potential energy, figure 6, and the ground state of the SQUID.
Then the qubit Hamiltonian takes the form, in the eigenbasis of the non-coupled wells,

Hq = − 1
2 (εσz + �σx). (41)

Here ε( fq) is the energy level difference in the wells proportional to fq − π , and � is the energy
level splitting due to the macroscopic tunnelling between the wells. The truncated interaction
term takes the form

Hint = EMφ0φsσz, (42)

where φ0 is the half distance between the minima of the potential energy. The off-diagonal term
in the interaction is neglected since it is exponentially small.

To truncate the SQUID Hamiltonian, we introduce new variables, φ± = (1/2)(φ1 ± φ2),
and φs = 2φ+ − fs,

Hs = 1

2
ECsn2

− + 2ECsn2
s − 2EJ s cos φ− cos

(
fs + φs

2

)
+ ELsφ

2
s + h̄

2e
I (t)φ−. (43)

Now we assume that the inductive energy is sufficiently large, ELs � EJ s , to provide small
fluctuation of the induced flux, φs � 1. This allows us to expand the cosine term; then keeping
the first order term with respect to φs (non-vanishing for fs �= 0), and taking into account the
interaction term (42), we write the φs-dependent part of the total Hamiltonian in the form

H (φs) = 2ECsn2
s +

(
EJ s cos φ− sin

(
fs

2

)
+ EMφ0( fq)σz

)
φs + ELsφ

2
s . (44)
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This is the linear oscillator shifted from the origin, the shift being proportional to the induced
flux in the qubit loop. Making a projection on the ground state of this Hamiltonian, we arrive
at the non-trivial, qubit-dependent part having the form

H (φs) → −2EJ sλ sin

(
fs

2

)
σz cos φ−, λ = EMφ0

8ELs
. (45)

Combining this with the rest of the SQUID Hamiltonian and the truncated qubit Hamiltonian,
we finally get

H = −1

2
(εσz + �σx) + 1

2
ECsn2

− − 2EJ s

[
cos

(
fs

2

)
+ λ sin

(
fs

2

)
σz

]
cos φ− + h̄

2e
I (t)φ−.

(46)

For the three-junction qubit [32] the coupling constant λ in equation (45) acquires an additional
factor [56] EJ q/ELq , which results from tracing out the plasma mode in the qubit loop. This
mode does not form the qubit in the three-junction circuit (in contrast to the single-junction
qubit), but this mode is an auxiliary one connecting the qubit to the outside world, and it is
eliminated similarly to the SQUID variable φ+ in equations (44) and (45).

The Hamiltonian (46) describes a flux qubit directly coupled via an effective coupling
constant λ to a non-linear Josephson oscillator. The coupling affects the Josephson energy of
the oscillator, hence the critical bias current, i.e. the the magnitude of the bias dc current at
which the oscillator switches to the dissipative regime. Quantitatively, these critical current
values for the three-junction qubit are

h̄

2e
Ic = 2EJ s

(
cos( fs/2) ± λ

EJ q

ELq
sin( fs/2)

)
. (47)

The advantage of this method is that the measurement circuit can be disconnected during
the time period between the measurements by switching off the flux through the SQUID,
fs = 0, thus enhancing the decoherence time of the qubit. The disadvantage of the method
is that for slow readout (low Josephson plasma frequency of the SQUID compared to the qubit
frequency) the switching current depends on the average value of the induced flux, 〈σz〉, which
equals zero at the degeneracy point, ε = 0. Thus measurement can only be performed by
departing from the degeneracy point, which is undesirable due to enhanced decoherence. This
difficulty can be solved by probing the qubit quantum inductance, which is analogous to the
quantum capacitance measurement for charge qubits.

7. Inductance measurement

Consider first a simpler circuit with a linear LC-oscillator replacing the dc SQUID (figure 7).
Such a device, an rf-SQUID inductively coupled to a linear oscillator, is a classical device
employed for many years for precise measurement of magnetic field [57]. The principle
of operation is based on the magnetic field dependence of the Josephson inductance, which
affects the resonance frequency of the oscillator probed by an external rf signal. The classical
Hamiltonian for this circuit, again assuming for simplicity a single Josephson junction in the
qubit loop, has the form

H = ECq n2
q − EJ q cos φq + ELq φ̃

2
q + EM φ̃qφ + ECoscn

2 + ELoscφ
2 + h̄

2e
I (t)φ. (48)

Neglecting the junction capacitance energy, and expanding the qubit potential energy near the
minimum point φ̃q0( fq),

−EJ q cos φq + ELq φ̃
2
q ≡ U(φ̃q) = U(φ̃q0) + 1

2U ′′(φ̃q0)(φ̃q − φ̃q0)
2, (49)
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I(t)

φ
φLoscLq

q

Figure 7. Single-contact flux qubit inductively coupled to a linear oscillator.

we define an effective inductance of the qubit circuit Leff
q via the relation

1
2 U ′′(φ̃q0) = (�0/2π)2/2Leff

q ( fq) = Eeff
Lq( fq). (50)

After having diagonalized the total potential energy, we obtain the shift of the oscillator
inductive energy due to coupling to the qubit,

ẼLosc = ELosc − E2
M

4Eeff
Lq( fq)

. (51)

This gives rise to a shift of the oscillator resonance frequency depending on the magnetic flux
through the qubit loop, which is probed with an external rf signal I (t).

A similar measurement procedure also applies to the quantum regime. The quantum
Hamiltonian for the same circuit has the form, taking into account equations (41) and (42),

H = −1

2
(εσz + �σx) + EMφ0φσz + ECoscn2 + ELoscφ

2 + h̄

2e
I (t)φ. (52)

For a slow oscillator and weak coupling, the Hamiltonian can be rotated to a qubit eigenbasis,
and expanded with respect to the coupling term,

H = −1

2
εσz − (EMφ0)

2

ε
φ2σz + ECoscn

2 + ELoscφ
2 + h̄

2e
I (t)φ (53)

(here the term linear in φ is omitted since it only produces a non-essential small shift of the
oscillator coordinate; ε = √

ε2 + �2). The second term in equation (53) provides the shift of
the oscillator inductive energy depending on the qubit state,

ẼLosc = ELosc − E2
Mφ2

0

ε
σz . (54)

Comparing this quantum result with the classical equation (51), we are able to identify the
quantum inductance of the qubit,

LQ =
(

2π

�0

)2 2φ2
0

ε
σz . (55)

The quantum inductance is inversely proportional to the qubit level splitting, similar to the
quantum capacitance of charge qubits, and it approaches its maximum value at the degeneracy
point.

This conclusion also applies to the three-junction flux qubit [32]; the only difference is due
to the suppressed coupling of the qubit to the outside world discussed in the previous section
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below equation (46). In this case, an additional small factor, EJ q/ELq , appears in the coupling
term in equation (52), giving rise to the following equation for the quantum inductance of the
three-junction qubit:

LQ =
(

2π

�0

)2 (
EJ q

ELq

)2 2φ2
0

ε
σz . (56)

Proceeding with the case of the readout dc SQUID, equation (46), we find that this case
seems to be qualitatively different from the LC-oscillator readout: the qubit–meter coupling
is non-linear. Obviously, this results from the fact that the qubit is not directly coupled to
the readout φ−-oscillator, but rather via an intermediate φs-oscillator, the elimination of which
results in the non-linear coupling.

One way to solve the problem is to displace the φ−-oscillator by applying a constant current
bias, I (t) = I0 + I1(t). Then expanding the potential energy around the minimum point,
φ− = φ̄− + θ , where φ̄− satisfies the equation 2EJ s cos( fs/2) sin φ̄− = −(h̄/2e)I0, we arrive,
in the linear approximation, at a Hamiltonian similar to equation (52),

H = −1

2
(εσz + �σx) + 1

2
ECsn2

− + EJ s cos φ̄− cos( fs/2)θ2 + λ̃EJ sθσz + h̄

2e
I1(t)θ, (57)

λ̃ = λ
h̄ I0 EJ q

2eELq
tan ( fs/2) . (58)

Another solution would be to access directly the φs-oscillator linearly coupled to the qubit. This
can be done, for example, by driving a bias flux through the SQUID, fs(t). For small variation
of phases in equation (43), the oscillators decouple, and the relevant part of the Hamiltonian,
taking into account equations (41) and (42), approaches a form similar to equation (52),

H = −1

2
(εσz + �σx) + 2ECsn2

s + EJ sφ
2
s + EM EJ qφ0

ELq
φsσz + 2EJ s fs(t)φs. (59)

Finally, the φs-oscillator may be accessed by using an asymmetric SQUID, with different
inductances of the left and right legs (figure 1), L1 �= L2, L1 + L2 = Ls. In this case, the
coupling of the SQUID to an external current source in equation (39) becomes modified to

h̄

4e
I (t)

(
L2

Ls
φ1 − L1

Ls
φ2

)
, (60)

which results in direct coupling of the probing current to the φs-oscillator. At zero flux bias,
fs = 0, the two φ±-oscillators do not interact, and the relevant part of the Hamiltonian reads

H = −1

2
(εσz + �σx) + 2ECsn2

s + (ELs + EJ s)φ
2
s + EM EJ qφ0

ELq
φsσz + h̄

2e
I (t)

L2 − L1

Ls
φs.

(61)

Thus there are several ways to employ the dc SQUID for dispersive measurement of the qubit
quantum inductance. Note, however, that in the latter case the inductive energy of the SQUID
plays a role, and for small SQUID inductance (ELs � EJ s) the oscillator frequency may
become large, violating the adiabatic regime assumed in the derivation.

8. Concluding remarks

In this paper we have outlined some practical schemes for capacitive and inductive readout,
detecting the state of a qubit by reflecting microwaves from an oscillator circuit, the phase shift
measuring the changes in charge or magnetic flux induced by a qubit, allowing us to distinguish
between the different states |0〉 and |1〉 of the qubit. In particular, we focused attention on
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the single-Cooper-pair box (SCB), the effective capacitance of which can be defined as the
derivative of the induced charge with respect to gate voltage. In addition to the geometric
capacitance, there is the quantum capacitance due to the level dispersion at the anti-crossing
caused by the Josephson coupling. We described the process of reflection of quantized radiation
and derived expressions for the shortest measurement time needed to resolve the qubit states,
suggesting that a low Q should be advantageous for weak back-action fast readout.
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[19] Sillanpää M, Roschier L and Hakonen P 2004 The inductive single-electron transistor (L-SET) Phys. Rev. Lett.
93 066805

[20] Lupascu A, Harmans C J P M and Mooij J E 2005 State detection of a superconducting flux qubit using a
dc-SQUID in the inductive mode Phys. Rev. B 71 184506

[21] Bertet P, Chiorescu I, Harmans C J P M and Mooij J E 2005 Dephasing of a flux qubit coupled to a harmonic
oscillator Preprint cond-mat/0507290

http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://www.eurosqip.org
http://arxiv.org/abs/cond-mat/0508729
http://dx.doi.org/10.1103/PhysRevLett.92.220402
http://dx.doi.org/10.1038/nature02570
http://dx.doi.org/10.1038/nature02608
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1038/nature04251
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevB.70.054521
http://dx.doi.org/10.1038/nature02851
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://www.cordis.lu/ist/fet/qipc.htm
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://qist.lanl.gov/
http://dx.doi.org/10.1103/PhysRevLett.95.206806
http://dx.doi.org/10.1103/PhysRevLett.95.206807
http://dx.doi.org/10.1016/S0921-4534(01)01182-0
http://dx.doi.org/10.1103/PhysRevLett.91.097906
http://dx.doi.org/10.1103/PhysRevLett.93.066805
http://dx.doi.org/10.1103/PhysRevB.71.184506
http://arxiv.org/abs/cond-mat/0507290


Readout methods and devices for Josephson-junction-based solid-state qubits S919

[22] Makhlin Y, Schön G and Shnirman A 2001 Quantum state engineering with Josephson-junction devices Rev.
Mod. Phys. 73 357

[23] Wilhelm F K 2003 An asymptotical von-Neumann measurement strategy for solid-state quantum bits Phys. Rev.
68 060503(R)

[24] Nakamura Y, Pashkin Yu and Tsai J S 1999 Coherent control of macroscopic quantum states in a single-Cooper-
pair box Nature 398 786

[25] Duty T, Gunnarsson D, Bladh K and Delsing P 2004 Coherent dynamics of a charge qubit Phys. Rev. B
69 1405023(R)

[26] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 The radio-frequency single-
electron transistor (rf-SET): a fast and ultra-sensititive electrometer Science 280 1238

[27] Astafiev O, Pashkin Yu A, Yamamoto T, Nakamura Y and Tsai J S 2004 Single-shot measurement of the
Josephson charge qubit Phys. Rev. B 69 180507(R)

[28] Vion D, Cottet A, Aassime A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Manipulating the
quantum state of an electrical circuit Science 296 886

[29] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2003 Rabi oscillations,
Ramsey fringes and spin echoes in an electrical circuit Fortsch. Phys. 51 462

[30] Corlevi S, Guichard W, Hekking F W J and Haviland D B 2005 Phase-charge duality of a Josephson junction in
a fluctuating electromagnetic environment Preprint cond-mat/0510504

[31] Sjostrand J, Walter J, Tholen E, Hansson H, Haviland D and Karlhede A 2005 Phase space topology of a switching
current detector Preprint cond-mat/0510246

[32] Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H and Lloyd S 1999 Josephson persistent current qubit
Science 285 1036

[33] van der Wal C H, ter Haar A C J, Wilhelm F, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and
Mooij J E 2000 Quantum superposition of macroscopic persistent-current states Science 290 773

[34] Friedman J R, Patel V, Chen W, Tolpygo S K and Lukens J E 2000 Detection of a Schrödinger’s cat state in an
rf-SQUID Nature 406 43

[35] Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Coherent quantum dynamics of a
superconducting flux-qubit Science 299 1869

[36] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Coherent dynamics of a
flux qubit coupled to a harmonic oscillator Nature 431 159

[37] Aassime A, Gunnarsson D, Bladh K, Delsing P and Schoelkopf R 2001 Radio-frequency single-electron
transistor: toward the shot-noise limit Appl. Phys. Lett. 79 4031

[38] Aassime A, Johansson G, Wendin G, Delsing P and Schoelkopf R 2001 Radio-frequency single-electron
transistor as read-out device for qubits: charge sensitivity and back-action Phys. Rev. Lett. 86 3376
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[40] Käck A, Wendin G and Johansson G 2003 Full frequency voltage noise spectral density of a single electron
transistor Phys. Rev. B 67 035301

[41] Astafiev O, Pashkin Yu A, Nakamura Y, Yamamoto T and Tsai J S 2004 Quantum noise in the Josephson charge
qubit Phys. Rev. Lett. 93 267007

[42] Ithier G et al 2005 Decoherence in a superconducting quantum bit circuit Phys. Rev. B 72 134519
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